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Abstract
We obtain exact results for the effective diffusion constant of a two-dimensional
Langevin tracer particle in the force field generated by charged point scatterers
with quenched positions. We show that if the point scatterers have a screened
Coulomb (Yukawa) potential and are uniformly and independently distributed
then the effective diffusion constant obeys the Volgel–Fulcher–Tammann law
where it vanishes. Exact results are also obtained for pure Coulomb scatterers
frozen in an equilibrium configuration of the same temperature as that of the
tracer.

PACS numbers: 05.20.−y, 66.10.Cb, 66.30.Xj

1. Introduction

The bulk transport properties of random media are of great importance in physics and
engineering. The computation of the bulk diffusivity, conductivity, permeability and
dielectric constant from the statistical properties of their local fluctuations is referred to
as homogenization. These bulk quantities describe the transport properties over large length
and time scales and will normally have well-defined values when the statistics of the local
fluctuations are homogeneous under translation. We will consider situations that are also
statistically isotropic since a breakdown of isotropy involves further levels of complexity,
important and interesting though they are.

In this paper, we compute the effective diffusion constant for tracer particles travelling
through a medium of fixed but randomly distributed centres of force. We assume for simplicity
that the centres of force are all identical but may have either positive or negative charge with
equal probability. The tracer therefore experiences a randomly fluctuating potential with zero
mean. This model of a disordered medium is a reasonable, if simplified, description of many
real physical systems where the random potential is induced by impurities inserted in a regular
background.
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Many studies of diffusion in a random potential have been based on the assumption
that it can be represented by a Gaussian field [1–5]. Diffusion in a non-Gaussian field has
been studied using perturbation theory [6]. However, the calculation is significantly more
complicated than that for the Gaussian case. The significance of our investigation is that we
obtain exact results for a class of problems, diffusion in random potentials of point scatterers,
that are non-Gaussian and for which few results are known. The results are exact in one and
two dimensions but experience suggests that they may be indicative for higher dimensional
cases.

2. The model

The position Xi , of a particle, of negligible inertia, subject to a white noise, wi(t), and a
potential φ(x), satisfies the equation

Ẋi = wi(t) + λ0∇iφ(X) (1)

where

〈wi(t)wj (t
′)〉 = 2κ0δij δ(t − t ′) (2)

and 〈· · ·〉 denotes an average over the white noise. The Einstein relation implies that the local,
or bare, diffusivity κ0 and the coupling to the potential gradient λ0 are related by the equation

λ0

κ0
= β = 1

T
(3)

where T is the absolute temperature in appropriate units. The probability density, p(x, t), for
the position of the particle obeys

∂p(x, t)

∂t
= κ0∇2p + λ0∇(p∇φ). (4)

The effective diffusivity, κ
(g)
e , appropriate to the dispersion of the particle at large times and

distances is

κ(g)
e = 1

2D
lim
t→∞

〈
X2

t

〉
t

(5)

where D is the dimension of space. The mean-squared displacement of the particle is given
by 〈

X2
t

〉 =
∫

dDxx2p(x, t). (6)

The superscript g is used to denote the fact that we are considering the effective diffusion
constant for a particle diffusing in a gradient field.

The description of the model is completed by specifying the structure of the potential φ(x)

in terms of the scattering centres and their charges. In this paper, we will consider potentials
of the type

φ(x) =
N∑

n=1

qnV (x − xn) (7)

generated by N scatterers frozen in the volume V . Here qn = ±1 is the charge on the scatterer
n, xn is its position and V (x) the potential at the point x due to a positively charged background
particle at the origin. In this paper, we shall consider distributions of the xn and qn such that
the field φ is statistically invariant under global transformation φ → −φ. This is clearly the
case for distributions of the xn which are homogeneous and isotropic along with the condition
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that the distribution of the qn is invariant under the global charge transformation qn → −qn.
An example of this type of distribution is one where the positions xn are distributed uniformly
and independently in the volume V and the charges are taken to be independent and ±1 with
probability 1

2 . In this case, the disorder average is given by

〈O〉d =
∏
n

∑
qn=±1

1

2V

∫
dDxnO. (8)

One could also consider a strictly electro-neutral ensemble where N/2 of the scatterers have
the charge ±1, here the disorder average is thus

〈O〉d =
∏
n

1

V

∫
dD xnO (9)

we shall see however in the thermodynamic limit these two problems have the same diffusion
constant. Another realization of an ensemble of the type mentioned above is one where a
system of N/2 positive and negative charges interacting via the Hamiltonian

H =
N∑

i<j

qiqjV (xi − xj ) (10)

are allowed to interact and equilibriate at some inverse temperature β ′, they are then frozen in
this equilibrium configuration giving a distribution of the xn of

P({xi}) = 1

Z(β ′)
exp


−β ′

N∑
i<j

qiqjV (xi − xj )


 (11)

where Z(β ′) is the partition function for the system. Clearly the uniform distribution of
equation (9) is recovered in the limit β ′ → 0.

3. Associated permeability model

In a previous paper, we showed that there is a strong connection between our gradient flow
model and the problem of computing the effective long-range diffusivity, κ(p)

e , of particle with
a locally random diffusivity field κ(x). A Langevin particle diffusing in a random medium
with local diffusivity κ(x) has a probability density which satisfies

∂p(x, t)

∂t
= ∇ κ(x)∇p. (12)

In this case, the long time transport can also be partially described by the asymptotic
behaviour of the mean-squared displacement.〈

X2
t

〉 � 2Dκ(p)
e t (13)

where κ
(p)
e is the bulk or effective diffusivity of the medium.

The problem of calculating κ
(p)
e is also equivalent calculating the bulk permeability

of a porous medium, where the flow is described by Darcy’s law [7], given that the local
permeability is κ(x). It is also equivalent to calculating the effective conductivity or effective
dielectric constant in media where κ(x) represents the local conductivity or dielectric constant.
The superscript p here is thus used to denote that the effective diffusion constant corresponds
to an effective permeability problem. The problem of calculating κ

(p)
e has been considered by

numerous authors via exact relations in one and two dimensions [7–10] and via perturbation
techniques in three dimensions [11–14].
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The relevant connection between the permeability problem and the gradient flow problem
emerges when the local diffusivity or permeability is chosen to be

κ(x) = κ0 exp(βφ(x)). (14)

In [15], it was shown that the bulk permeability or effective diffusion constant for equation (12)
with a local diffusivity given by equation (14) and that for the gradient flow problem
equation (4) with the same field φ are related by

κ
(g)
e

κ
(p)
e

= κ0

κ̄
(15)

where

κ̄ = 1

V

∫
dDx κ(x). (16)

The relation equation (15) holds in all dimensions where the corresponding κe exist. In a
statistically homogeneous system with short-range correlations in the field φ, in the limit of
large V we expect κ̄ to be self-averaging, or realization independent, i.e.

κ̄ = 〈κ̄〉d =
〈

1

V

∫
dDxκ(x)

〉
d

. (17)

4. Duality relation and the two-dimensional result

For two-dimensional systems, we can obtain exact results by combining equation (15) with
a standard duality theorem [8–10]. For completeness we derive the relevant result in a form
appropriate to the problem under consideration.

As a preliminary we note that when the fields φ(x) and −φ(x) are statistically equivalent
it follows that local diffusivities κ(x) and κ ′(x) = κ2

0

/
κ(x) are also statistically equivalent.

We view equation (12) as describing the flow of the density p(x) through the random medium.
The associated current is j (x) = κ(x)∇p(x). In the steady state we have

∇(κ(x)∇p(x)) = 0 (18)

and on averaging over the ensemble of samples we have, assuming a constant mean current
and density gradient,

〈j (x)〉 = 〈κ(x)∇p(x)〉 = κ(p)
e 〈∇p(x)〉. (19)

In two dimensions equation (18) implies that there exists a dual field χ(x) such that

j (x) = κ(x)∇p(x) = κ0n × ∇χ(x) (20)

where n is a unit vector orthogonal to the two-dimensional plane of the problem. We also have
the dual equation

κ ′(x)∇χ(x) = −κ0n × ∇p(x) (21)

which implies

∇(κ ′(x)∇χ(x)) = 0. (22)

Since κ ′(x) is statistically equivalent to κ(x) it follows that

〈κ ′(x)∇χ(x)〉 = κ(p)
e 〈∇χ(x)〉 (23)

with the same effective permeability κ
(p)
e , as in the original problem. We have then the two

dual results

κ(p)
e 〈∇p(x)〉 = κ0n × 〈∇χ(x)〉 (24)
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and

κ(p)
e 〈∇χ(x)〉 = −κ0n × 〈∇p(x)〉. (25)

The consistency of these equations implies that

κ(p)
e = κ0. (26)

Combining this result with equation (15) we obtain the general result valid in two
dimensions

κ(g)
e = κ2

0

κ̄
. (27)

Equation (27) was previously used by the authors to solve the problem of calculating κ
(g)
e in a

homogeneous Gaussian field in two dimensions to give

κ(g)
e = κ0 exp

(
−β2

2
�(0)

)
(28)

where � is the connected two-point correlation function defined by

�(x − x ′) = 〈φ(x)φ(x ′)〉d − 〈φ(x)〉d〈φ(x ′)〉d (29)

the average again being over the sample disorder. This result is particularly interesting as it
showed that the renormalization group result for κ

(g)
e [1, 2] in dimension D, given by

κ(g)
e (RG) = κ0 exp

(
−β2

D
�(0)

)
(30)

was exact in two dimensions. Equation (30) was already known to be exact in one dimension
[2]. Indeed in one dimension the effective permeability is given for a general homogenous
κ(x) by

κ(p)
e =

(
1̄

κ

)−1

(31)

i.e. the harmonic mean of the local permeability. Using the result equation (15) we thus obtain
the solution of the corresponding gradient flow problem in one dimension to be

κ
(g)
e

κ0
= 1

/(
κ̄

1̄

κ

)
(32)

5. Some examples

For the problem of tracer particles moving through scatterers uniformly and independently
distributed in two dimensions, we can combine equation (8) with equation (17) to obtain

κ̄ =
∏
n

[∫
d2xn

V

1

2

∑
qn

exp (βqiV (−xn))

]
=

[
1 +

1

V

∫
d2x (cosh (βV (x)) − 1)

]N

. (33)

We now take the thermodynamic limit, that is N → ∞ at fixed ρ = N/V and obtain the exact
result

κ(g)
e = κ0 exp

(
−ρ

∫
d2x (cosh (βV (x)) − 1)

)
. (34)

The distribution given by equation (9) for an exactly neutral system of scatterers of density ρ

also leads to the same result equation (34) in the thermodynamic limit.
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It is interesting to review the relationship of this result to equation (28) for the model in
which φ(x) is a Gaussian field [1, 2] with zero mean. In the case of uniformly distributed
randomly charged scatterers the two-point correlation function of the field φ is given by

�(x − x ′) = ρ

∫
d2x ′′V (x − x ′′)V (x ′ − x ′′). (35)

Applying the Gaussian ‘prediction’ equation (28) for the diffusivity therefore gives

κ(g)
e = κ0 exp

{
−β2

2
ρ

∫
d2xV 2(x)

}
. (36)

Comparing equations (36) and (34) we see that the result for the Gaussian field is recovered
from that of the point scatterers in the limit β → 0 while ρβ2 = c with c a constant. This limit
where the scatterer disorder acquires a Gaussian character can also be found by examining
the perturbation theory for this problem and holds in all dimensions. It is interesting to note
that the Gaussian limit does not necessarily hold, as one may have naively expected from the
central limit theorem, simply in the limit of large ρ.

It is illuminating to consider the particular case where the V (x) is a screened Coulomb
potential (Yukawa interaction) in two dimensions. We have

∇2V (x) − µ2V (x) = −2πδ(x) (37)

where µ−1 is the screening length. Writing |x| = r , V (x) = V (r) has the asymptotic
behaviour

V (r) ∝
{

− ln(r) r 	 µ−1

exp(−µr)/
√

µr r � µ−1.
(38)

From this we see that the integral∫
d2x(cosh(βV (x)) − 1) (39)

is convergent for large r when µ > 0 and for small r when β < 2. The importance of the
screening is now revealed since its removal, by setting µ = 0, leads to the integral becoming
infra-red divergent thus forcing the diffusion constant to vanish. It would be interesting to
investigate this regime separately since the actual behaviour of the sample would presumably
be sub-diffusive and hence scale dependent.

The integral also diverges and the diffusivity goes to zero as β approaches 2 from below,
that is as the temperature cools to T = 1/2. It is possible to analyse the qualitative nature of
the divergence since it is contained in the integral∫

r�r0

d2x(cosh(βV (x)) − 1) �
∫ r0

0
drAr1−β � A

2 − β
(40)

for some A > 0 and sufficiently small r0. It follows that the diffusivity behaves as

κ
(g)
e

κ0
≈ B exp

(
− ρA

2 − β

)
(41)

which is of the form of the Volgel–Fulcher–Tammann law reported in fragile glass formers
as they approach Tg . It is important to recognize that the effect is one associated with short
distances. A qualitative light is shed on the circumstances by considering the equilibrium
tracer particle density in the presence of the scattering centres. At any time only the nearest
such scatterer dominates the tracer particle probability density. If this has the opposite sign of
charge to the tracer particle then the probability density is h(x) where

h(x) = exp (βV (x))∫
V

dD x ′ exp(βV (x ′))
(42)
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where we have placed the scatterer at the origin. Obviously this exhibits the same divergence
as before and the density only exists for β < 2. The physical interpretation of this result is
that the tracer particle eventually becomes trapped at the point x = 0 and thus diffusion is
stopped.

We now consider a system where the configuration of the scatterers is that obtained by
freezing an equilibrium configuration of mobile interacting scatterers at equilibrium at inverse
temperature β, the same inverse temperature as the tracer particle i.e. with a distribution of
the xn given by equation (11) with β = β ′. This situation would apply to a very mobile tracer
diffusing in a background of very slowly moving charges of the same valence, for example an
electron in a background of immobile ions. To facilitate the calculation of κ̄ we pass to the
grand canonical ensemble for the scatters to obtain

κ̄ = 1

�

∑
N+,N−

∫
dDxi

N+!N−!

dDx

V

× zN++N− exp


−β

∑
i<j

qiqjV (xi − xj )


 exp

(
β

∑
i

qiV (xi − x)

)
(43)

where the integration over x above is the spatial averaging of κ(x) over V , � the grand partition
function and z is the fugacity of the positive and negative charges. The above expression can
clearly be written as

κ̄ = 1

zV �

∑
N+,N−

(N− + 1)zN++N−+1ZN+,N−+1 (44)

where ZN+,N− is the canonical partition function for a system of N+/− positive/negative charges.
In the thermodynamic limit we thus obtain

κ̄ = ρ

2z
(45)

which yields

κ
(g)
e

κ0
= 2z

ρ
. (46)

For the case of a pure Coulomb interaction i.e. when µ = 0

V (x) = − ln

( |x|
L

)
(47)

where L is a length scale which from here on we set to be 1. The statistical mechanics of the
two-dimensional Coulomb gas has been recently exactly solved [16] in the region where the
model is thermodynamically stable (i.e. β < 2). For β > 2 the system is thermodynamically
unstable and collapses unless a hard-core interaction is included between the particles; this
instability is present for the reasons mentioned previously. In the stable region it has been
shown

ρ1−β/4

z
= 2

(
πβ

8

)β/4
�(1 − β/4)

�(1 + β/4)

[
2F1

(
1

2
,

β

4 − β
; 1 +

β

2(4 − β)
; 1

)]1−β/4

. (48)

The resulting behaviour for κ
(g)
e when β 	 1 is

κ
(g)
e

κ0
≈ (ρβ)−β/4 exp

[
−

(
2γ + ln

(π

2

)) β

4
− 7

6
ζ(3)

(
β

4

)3

− ζ(3)

(
β

4

)4
]

(49)
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where 2F1 the the hyper-geometric function. Near the collapse point one finds

κ
(g)
e

κ0
≈

(
2 − β

ρπ

)1/2

(50)

as β → 2−. The interesting thing about these results is that the diffusivity is non-zero in
all the region of stability, in contrast to the case of uniformly distributed Coulomb scatterers
where it is zero in the thermodynamic limit in this region. Physically the fact that the Coulomb
scatterers are allowed to equilibrate generates a screening characterized by a Debye length
and the long-range fluctuations of the electrostatic field are thus suppressed allowing a normal
diffusion. The way in which the diffusion constant vanishes in equation (50) as β → 2− is
also clearly very different to the case of a uniform distribution of Yukawa scatterers.

6. Conclusion

We have examined the problem of calculating the effective diffusivity of a Langevin particle
diffusing in the force field generated by charged scatterers in two dimensions. The fact that the
system is statistically electro-neutral means that the potential φ has the same distribution as −φ.
Using a general exact result connecting the effective diffusions constant of the gradient flow
and varying permeability problem and an exact result in two dimensions for the permeability
problem allows us to solve exactly the problem of calculating κ

(g)
e in the cases studied here.

The results obtained give insight into the circumstances under which the random field
may be taken to be Gaussian for the purposes of calculating the effective diffusion constant.
It is clear from this study that the random field due to frozen scatterers will lead to transport
properties that are generally different to that of a Gaussian random field with the same two-
point correlation function. It was also shown that the nature of the correlations between
the point scatterers can drastically modify the behaviour of κ

(g)
e . For instance the diffusion

constant for a system of electro-neutral uniformly distributed Coulomb scatterers is always
zero at non-zero temperature, however if they are taken in an equilibrium configuration of
the same temperature as the tracer particles then κ

(g)
e is finite at high temperature. The exact

results here should be useful in developing perturbative techniques to treat problems in higher
dimensions and in two dimensions where there is only one type of scattering particle, i.e. no
charge.
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